Pular para o conteúdo principal

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

 


SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




 SISTEMA GRACELI INFINITO-DIMENSIONAL.


COM  ELEMENTOS DO SISTEMA SDCTIE GRACELI, TENSOR G+ GRACELI CAMPOS E ENERGIA, E ENERGIA, E CONFIGURAÇÕES ELETRÔNICAS DOS ELEMENTOS QUÍMICO, E OUTRAS ESTRUTURAS.

ESTADO E NÚMERO QUÂNTICO, NÍVEIS DE ENERGIA DO ÁTOMO, FREQUÊNCIA. E OUTROS.


  TENSOR G+ GRACELI, SDCTIE GRACELI, DENSIDADE DE CARGA E DISTRIBUIÇÃO ELETRÔNICA, NÍVEIS DE ENERGIA, NÚMERO E ESTADO QUÂNTICO. + POTENCIAL DE SALTO QUÂNTICO RELATIVO AOS ELEMENTOS QUÍMICO COM O SEU RESPECTIVO  E ESPECÍFICO NÍVEL DE ENERGIA.



SISTEMA MULTIDIMENSIONAL  GRACELI

ONDE A CONFIGURAÇÃO ELETRÔNICA TAMBÉM PASSA A SER DIMENSÕES FÍSICO-QUÍMICA DE GRACELI.


Configuração eletrônica dos elementos químicos. [parte do sistema Graceli infinito-dimensional.




Formulação em termos de campo elétrico e magnético (microscópico ou no vácuo)

Na formulação do campo elétrico e magnético, existem quatro equações que determinam os campos para determinada carga e distribuição de corrente. Uma lei separada da natureza, a lei da força de Lorentz, descreve como, inversamente, o campo elétrico e magnético atua sobre partículas carregadas e correntes. Uma versão desta lei foi incluída nas equações originais por Maxwell mas, por convenção, ela foi excluída. Por formalismo de cálculo vetorial abaixo, devido a Oliver Heaviside,[5] tornou-se padrão. É manifestamente rotativo invariante e, portanto, matematicamente muito mais transparente que as 20 equações originais de Maxwell em componentes x, y, z. As formulações relativísticas são ainda mais simétricas e manifestamente invariantes por Lorentz. Para as mesmas equações expressas usando cálculo tensorial ou formas diferenciais.

As formulações de equações diferenciais e integrais são matematicamente equivalentes e são úteis. A formulação integral relaciona campos dentro de uma região de espaço a campos no limite e pode freqüentemente ser usada para simplificar e calcular diretamente campos de distribuições simétricas de cargas e correntes. Por outro lado, as equações diferenciais são puramente locais e são um ponto de partida mais natural para o cálculo dos campos em situações mais complicadas (menos simétricas), por exemplo, usando a análise de elementos finitos.

Tabela dos termos usados

A tabela a seguir fornece o significado de cada símbolo e da unidade SI de medida

Definições e unidades
SímboloSignificado (o primeiro termo é o mais comum)Unidade SI de medida
Campo elétrico
Também chamado de intensidade de campo elétrico
volt por metro
newton por coulomb
Campo magnético
Também chamado de indução magnética
Densidade de campo magnético
Densidade de fluxo magnético
tesla
weber por metro quadrado,
volt-segundo por metro quadrado
Campo de deslocamento elétrico
Também chamado de indução elétrica
Densidade de fluxo elétrico
coulomb por metro quadrado
newton por volt-metro
Campo magnetizante
Também chamado de campo magnético auxiliar
Intensidade de campo magnético
Campo magnético
ampère por metro
Operador divergência"por metro"
Operador rotacional
Derivada parcial com respeito ao tempo"por segundo"
hertz
Elemento vetoral diferencial da superfície "A", com magnitude infinitesimalmente pequena e direção normal à superfície "S"metro quadrado
Elemento vetorial diferencial do comprimento tangencial à curvametro
Permissividade do vácuo, também chamada de constante elétrica, uma constante universalfarad por metro
coulomb ao quadrado por newton metro quadrado
Permeabilidade do vácuo, também chamada de constante magnética, uma constante universalhenry por metro
newton por ampère ao quadrado
Densidade de carga livre (cargas ligadas)coulomb por metro cúbico
Densidade de carga total (incluindo cargas livres e ligadas)coulomb por metro cúbico
Densidade de corrente livre (não incluindo correntes ligadas)ampère por metro quadrado
Densidade de corrente total (incluindo correntes livres e ligadas)ampère por metro quadrado
Rede de cargas elétricas livres dentro de um volume tridimensionalV (não incluindo cargas ligadas)coulomb
Rede de cargas elétricas ligadas a um volume tridimensionalV (incluindo cargas livres e ligadas)coulomb
Integral de linha ao longo da fronteira ∂S de uma superfície S (∂S é sempre uma curva fechada - sem início nem fim).joule por coulomb
  Integral de linha do campo magnético sobre a fronteira fechada ∂S da superfície Stesla-metro
fluxo elétrico (integral de superfície do campo elétrico) por meio da superfície fechada  (a fronteira do volume V)joule-metro por coulomb
fluxo magnético (Integral de superfície do campo magnético) por meio da superfície fechada  (a fronteira do volume V)tesla-metro-quadrado ou weber
Fluxo magnético através de qualquer superfície S, não sendo necessariamente uma superfície fechadaweber ou volt-segundo
Fluxo elétrico através de qualquer superfície S, não sendo necesariamente fechadajoule-metro por coulomb
Fluxo de campo de deslocamento elétrico através de qualquer superfície S, não sendo necessariamente fechadacoulomb
Rede de corrente elétrica livre passando através da superfície S (não incluindo correntes ligadas)ampère
Rede de corrente elétrica passando através da superfície S (incluindo correntes livres e ligadas)ampère

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




Formulação em unidades SI

NomeEquações integraisEquações diferenciais
Lei de Gauss
Lei de Gauss para o magnetismo
Lei da Faraday de indução
Lei circular de Ampère com adição de Maxwell
/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




Formulação em unidades gaussianas

As definições de carga, campo elétrico e campo magnético podem ser alteradas para simplificar o cálculo teórico, absorvendo fatores dimensionados de  nas unidades de cálculo, por convenção. Com uma mudança correspondente na convenção para a lei de força de Lorentz, isto produz a mesma física, isto é, trajetórias de partículas carregadas, ou trabalho feito por um motor elétrico. Estas definições são frequentemente preferidas na física teórica e de alta energia onde é natural tomar o campo elétrico e magnético com as mesmas unidades, para simplificar a aparência do tensor eletromagnético: o objeto covariante de Lorentz unificando campo elétrico e magnético então conteria componentes com unidade e dimensão uniformes:[6] Essas definições modificadas são convencionalmente utilizadas com as unidades gaussianas (CGS). Usando essas definições e convenções, coloquialmente "em unidades gaussianas",[7] as equações de Maxwell se tornam

NomeEquações integraisEquações diferenciais
Lei de Gauss
Lei de Gauss para o magnetismo
Lei da Faraday de indução
Lei circular de Ampère com adição de Maxwell
/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





Note-se que as equações são particularmente legíveis quando o comprimento e o tempo são medidos em unidades compatíveis como segundos e segundos-luz, isto é, em unidades tais que c = 1 unidade de comprimento / unidade de tempo. Desde 1983, os medidores e segundos são compatíveis, exceto pelo legado histórico, pois, por definição, c = 299 792 458 m / s (≈ 1,0 pés / nanossegundo).

Mudanças cosméticas adicionais, chamadas de racionalizações, são possíveis por fatores absorventes de 4π, dependendo se queremos que a lei de Coulomb ou a lei de Gauss se saiam bem, veja unidades de Lorentz-Heaviside (usadas principalmente na física de partículas). Na física teórica, muitas vezes é útil escolher unidades tais que a constante de Planck, a carga elementar e até mesmo a constante de Newton sejam 1.

Relação entre formulações integrais e diferenciais

A equivalência das formulações integrais e diferenciais é consequência do Teorema da Divergência e do Teorema de Kelvin-Stokes.

Fluxo e divergência

Volume Ω e sua superfície de contorno ∂Ω contendo (respectivamente incluindo) uma fonte (+) e um dissipador (-) de um campo vetorial F. Aqui, F poderia ser o campo E com cargas elétricas de origem, mas não o campo B, que não tem carga magnética como mostrado. A normal orientada para fora é n.

De acordo com o (puramente matemático) teorema de divergência de Gauss, o fluxo elétrico através da superfície de contorno ∂Ω pode ser reescrito como:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





A versão integral da equação de Gauss pode ser reescrita como:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





Como Ω é arbitrário (por exemplo, uma pequena bola arbitrária com centro arbitrário), isso é satisfeito se e somente se, o integrando for zero. Esta é a formulação de equações diferenciais da equação de Gauss até um rearranjo trivial.

Da mesma forma, reescrever o fluxo magnético na lei de Gauss para o magnetismo em forma integral dá:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




que é satisfeito por

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





Sendo delΩ a superfície de contorno ∂Ω nas equações matemáticas apresentadas.

Circulação e rotacional

Superfície Σ com curva de controle fechada ∂Σ. F poderia ser os campos E ou B. Mais uma vez, n é a normal. (O rotacional de um campo vetorial não se parece literalmente com as "circulações", isso é uma representação heurística.)

Pelo teorema de Stokes podemos reescrever as integrais de linha dos campos ao redor da curva de controle fechada ∂Σ para uma integral da "circulação dos campos" (ou seja, seus rotacionais) sobre uma superfície que ela delimita, ou seja,

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





Assim, a lei Ampere modificada na forma integral pode ser reescrita como

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





Como Σ pode ser escolhido arbitrariamente, por ex. como um disco arbitrariamente pequeno, arbitrariamente orientado, e arbitrariamente centrado, podemos concluir que o integrando é zero se e somente se, a lei modificada de Ampère na forma de equações diferenciais for satisfeita. A equivalência da lei de Faraday na forma diferencial e integral segue da mesma forma.

As integrais de linha e rotacionais são análogos às grandezas na dinâmica clássica de fluidos: a circulação de um fluido é a integral da linha do campo de velocidade de fluxo do fluido em torno de um circuito fechado, e a vorticidade do fluido é o rotacional do campo de velocidade.

Sumário de equações

As equações de Maxwell variam conforme o sistema de unidades usado. Embora a forma geral permaneça, várias definições são alteradas e diferentes constantes aparecem em diferentes lugares. As equações nesta seção são dadas no Sistema Internacional de Unidades (SI). Outras unidades comumente usadas são as unidades gaussianas, baseado no sistema CGS de unidades, as unidades de Lorentz-Heaviside, usado principalmente em física de partículas e as unidades naturais, conhecidas também como unidades de Planck, usada em física teórica.

Nas equações abaixo, símbolos em negrito representam grandezas vetoriais, e símbolos em itálico representam grandezas escalares. As definições dos termos usados abaixo são dadas logo abaixo em tabelas a parte.

Tabela das equações "microscópicas"

Formulação em termos de carga e corrente totais
NomeForma diferencialForma integral
Lei de Gauss
Lei de Gauss para o magnetismo
Lei de Faraday da indução
Lei de Ampère
(com a correção de Maxwell)
/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





Tabela das equações "macroscópicas"

Formulação em termos de carga e corrente "livres"
NomeForma diferencialForma integral
Lei de Gauss
Lei de Gauss para o magnetismo
Lei de Faraday da indução
Lei de Ampère
(com a correção de Maxwell)
/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.






Unidades gaussianas

As equações de Maxwell são dadas normalmente no Sistema Internacional de Unidades (SI). No sistema gaussiano de unidades, as equações tomam forma mais simétrica. Os termos em negrito representam vetores:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





Onde c é a velocidade da luz no vácuo. A simetria é mais aparente quando o campo eletromagnético é considerado no vácuo. As equações tomam a seguinte forma altamente simétrica:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





A força exercida por um campo elétrico e um campo magnético sobre uma partícula carregada é dada pela equação da força de Lorentz:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





onde  é a carga da partícula e  é a velocidade da partícula. Note que esta é levemente diferente da expressão do SI acima. Por exemplo, aqui o campo magnético tem as mesmas unidades do campo elétrico .

Em materiais lineares

Em materiais lineares, os campos D e H são relacionados a E e B por:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





nos quais:

ε é a constante dieléctrica ou permissividade elétrica.

μ é a permeabilidade magnética.

Isto pode ser estendido para materiais não-lineares, fazendo ε e μ dependentes da intensidade do campo. Por exemplo, o efeito Kerr, o efeito Pockels e materiais não-isotrópicos, ε e μ passam a ser tensores que mudam a direção do campo ao qual são aplicados.

Em meios isotrópicos e não dispersivos, ε e μ são escalares independentes do tempo, e as equações de Maxwell se reduzem a

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





Em um meio uniforme, homogêneo, ε e μ são constantes independentes da posição, e podem portanto ser trocadas pelas derivadas espaciais.

De modo geral, ε e μ podem ser tensores de segunda ordem, descritos por matrizes 3×3, e descrevem materiais birrefringentes ou anisotrópicos.

Embora para muitos propósitos a dependência tempo/frequência destas constantes possa ser desprezada, todo material real exibe alguma dispersão material pela qual ε e/ou μ dependem da frequência, e a causalidade vincula esta dependência às relações de Kramers-Kronig.

Vácuo

vácuo é um meio linear, homogêneo e isotrópico, e suas constantes elétricas são designadas por ε0 e μ0, desprezando-se pequenas não-linearidades devido a efeitos quânticos. Caso não haja presença de correntes ou cargas elétricas, obtêm-se as equações de Maxwell no vácuo:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





Estas equações têm uma solução simples em termos de ondas progressivas planas senoidais, com as direções dos campos elétricos e magnéticos ortogonais um ao outro e à direção do deslocamento, e com os dois campos em fase:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





Mas:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





O que permite obter a equação da onda eletromagnética:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




De onde se obtém a velocidade da onda eletromagnética (c):

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





Maxwell percebeu que essa quantidade "v" poderia estar relacionada à velocidade da luz no vácuo, e concluiu que a própria luz poderia ser uma forma de radiação eletromagnética, confirmada por Heinrich Hertz em 1888.

Detalhamento

Densidade de carga e campo elétrico

A forma integral equivalente (dada pelo teorema da divergência), também conhecida como lei de Gauss, é:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




pelo teorema da divergência:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





e pela Lei de Gauss:

logo

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





onde  é a área de um quadrado diferencial numa superfície fechada A com uma normal dirigida para fora definindo sua direção, e  é a carga livre abrangida pela superfície. portanto:

 logo  ,
/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




onde  é a densidade volumétrica de carga elétrica livre (SI: C/m3), não incluindo dipolos de cargas ligadas no material, e  é a densidade superficial de carga elétrica (SI: C/m2). Esta equação corresponde à lei de Coulomb para cargas estacionárias no vácuo.

Em um material linear,  está diretamente relacionado ao campo elétrico  por meio de uma constante dependente do material chamada permissividade :

.
/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




Qualquer material pode ser tratado como linear, desde que o campo elétrico não seja extremamente intenso. A permissividade do espaço livre é referida como , e aparece em:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





onde, novamente,  é o campo elétrico (SI: V/m),  é densidade de carga total, incluindo as cargas ligadas, e  (aproximadamente 8,854 pF/m) é a permissividade do vácuo também pode ser escrito como , onde  é a permissividade relativa do material ou sua constante dieléctrica.

Estrutura do campo magnético

 é a densidade de fluxo magnético (SI: tesla, T), também chamada a indução magnética.

A sua forma integral equivalente é:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




 é a área de um quadrado diferencial  com uma normal superficial apontando para fora, definindo sua direção. Semelhantemente à forma integral do campo elétrico, esta equação funciona somente se a integral for calculada sobre uma superfície fechada.

Esta equação é relacionada à estrutura do campo magnético porque, dado o elemento de volume, a magnitude líquida dos componentes vectoriais que apontam para fora da superfície deve ser igual à magnitude dos componentes vectoriais que apontam para dentro. E, estruturalmente, isto significa que as linhas do campo magnético devem ser linhas ou trajetórias fechadas. Outra maneira de se afirmar isto é que as linhas de campo não podem se originar de outro lugar. Esta é a formulação matemática da hipótese de que não há monopolos magnéticos.

Campos magnéticos e elétricos variáveis

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




Usando a forma integral equivalente e usando o teorema de Stokes, temos:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





e como pela lei de Faraday :

 onde 
/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




logo

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




onde

ΦB é o fluxo magnético através da área A descrita pela segunda equação

E é o campo elétrico gerado pelo fluxo magnético

c é um contorno fechado na qual a corrente é induzida, tal como um fio.

S é a superfície enlaçada pela curva c.

força eletromotriz, algumas vezes denotada como  e não deve ser confundida com a permissividade acima, é igual ao valor desta integral. Esta lei corresponde à lei de Faraday de indução eletromagnética.

Esta equação relaciona os campos elétrico e magnético, mas isso também tem várias aplicações práticas. Esta equação descreve como motores elétricos e geradores elétricos trabalham. Especificamente, isto demonstra que a voltagem pode ser gerada pela variação do fluxo magnético passando através de uma dada área no tempo, tal como acontece com uma espira girando uniformemente através de um campo magnético fixado.

Em um motor ou gerador, a excitação fixa é fornecida pelo circuito de campo e a voltagem variável é medida pelo circuito da armadura. Em alguns tipos de motores/geradores, o circuito de campo é montado sobre o rotor e o circuito da armadura é montado sobre o estator, mas outros tipos de motores/geradores empregam a configuração contrária.

Fonte do campo magnético

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




onde H é a intensidade de campo magnético (SI: A/m), relacionado ao campo magnético B por uma constante chamada permeabilidade magnética μ (B = μH), e J é a densidade de corrente elétrica, definida por:, onde v é o campo vetorial chamado de velocidade de arraste que descreve as velocidades de um portador de carga que tem uma densidade descrita pela função escalar .

Utilizando o Teorema de Stokes temos:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




logo:

Lei de Ampere

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




Complemento a Lei de Ampere, temos a contribuição de Maxwell: 

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




Icirculada é a corrente circulada pela curva c (a corrente através de qualquer superfície é definida pela equação:

.

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




No vácuo, a permeabilidade μ é a permeabilidade do espaço vazio, μ0, que é definida como sendo exactamente 4π×10−7 W/A m. Também, a permissividade torna-se a permissividade ε0. Portanto, no vácuo, a equação torna-se:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




Usando a forma integral equivalente:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





s é a aresta de uma superfície A, onde qualquer superfície com a curva s como sendo sua aresta deverá servir, e Icirculada é a corrente circulada pela curva s. A corrente através de qualquer superfície é definida pela equação: Iatravés de A =∫AJ dA. Se a densidade de fluxo elétrico não variar muito rapidamente, o segundo termo do membro direito, o fluxo de deslocamento, é desprezível, e a equação se reduz à lei de Ampère.

Equações de Maxwell na relatividade especial

Na relatividade especial, para expressar mais claramente o fato de que as equações de Maxwell no vácuo tomam a mesma forma em todos os sistemas de coordenadas inerciais, as equações de Maxwell são escritas em termos de quadrivetores e quadritensores na forma manifestamente covariante:

,
/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




e

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





onde J é a quadricorrenteF é o tensor intensidade de campo ou tensor de Faraday, escrito como uma matriz 4 × 4 , e  é o quadrigradiente, tal que  é o operador d'Alembertiano. O α na primeira equação é implicitamente somado de acordo com a convenção da notação de Einstein. A primeira equação tensorial expressa as duas equações inomogêneas de Maxwell: lei de Gauss e a lei de Ampère com a correção de Maxwell. A segunda equação expressa as outras duas equações homogêneas: a lei de indução de Faraday e a ausência de monopólos magnéticos.

Mais explicitamente, J = (cρ, J), um vetor contravariante, em termos da densidade de carga ρ e a densidade de corrente J. Em termos de quadripotencial, como um vetor contravariante, , onde φ é o potencial elétrico e A é o potencial vetor magnético pelo calibre de Lorentz F pode ser expresso como:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




o que conduz a uma matriz 4 × 4 (tensor de segunda ordem):

O fato de que ambos os campos elétrico e magnético são combinados em um único tensor, que expressa que, de acordo com a relatividade, ambos os campos são diferentes aspectos da mesma coisa. E assim pela troca dos referenciais, o que parecia ser um campo elétrico em um referencial se afigura como um campo magnético em outro referencial, e vice-versa.

Note que diferentes autores algumas vezes empregam diferentes convenções de sinal para os tensores e quadrivetores, o que não afeta a interpretação física. Note também que Fαβ e Fαβ não são os mesmos: eles são as formas do tensor contravariante e covariante , relacionados pelo tensor métrico g. Na relatividade especial o tensor métrico introduz as mudanças de sinal em algumas componentes de F; dualidades métricas mais complexas são encontradas na relatividade geral.

Equações de Maxwell no vácuo

No vazio, onde não existem cargas nem correntes, podem ainda existir campos elétrico e magnético. Nesse caso, as quatro equações de Maxwell são:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




O único parâmetro nessas equações é a constante . No sistema internacional de unidades, o valor dessa constante é:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





que é exatamente igual ao inverso do quadrado da velocidade da luz :

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




Na época de Maxwell, meados do século XIX, a velocidade da luz já tinha sido medida com precisão dando exatamente o mesmo valor que acabamos de calcular a partir da constante de Coulomb e da constante magnética. Assim, Maxwell concluiu que a luz deveria ser uma onda eletromagnética, composta por campos elétrico e magnético que se propagam no espaço.[8]

Formas diferenciais

No vácuo, onde ε e μ são constantes em toda parte, as equações de Maxwell simplificam-se consideravelmente uma vez que se use a linguagem da geometria diferencial e formas diferenciais. Com isso, os campos elétrico e magnético são conjuntamente descritos por uma 2-forma em um espaçotempo quadridimensional, a qual é usualmente chamada F. As equações de Maxwell então se reduzem à identidade de Bianchi

onde d é a derivada exterior, e a equação fonte

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




onde o asterisco * é a estrela de Hodge. Aqui, os campos são representados em unidades naturais onde ε0 é 1. Aqui, J é a 1-forma, chamada de corrente elétrica, que satisfaz a equação da continuidade

Espaço fibrado

A formulação mais concisa e abrangente das equações de Maxwell e da eletrodinâmica clássica em geral é como um espaço fibrado com fibra U(1). A conexão no espaço fibrado é d+A com A sendo o quadrivetor compreendendo o potencial elétrico e o potencial vetor magnético. A curvatura da conexão F=dA é a intensidade de campo. Há um resultado criticamente importante dentro do conceito de espaço fibrado que mostra que esta é a abordagem correta: a holonomia em um espaço fibrado descreve o efeito Aharonov-Bohm. Embora o efeito Aharonov-Bohm seja algumas vezes admitido como um efeito quântico, sua explicação não requer qualquer quantização do campo eletromagnético. O efeito pode ser entendido em termos puramente clássicos como a holonomia de uma curva em um espaço fibrado. Sem a formulação do espaço fibrado, o efeito Aharonov-Bohm parece ser uma fantasmagórica ação a distância, inexplicável pelas tradicionais equações de Maxwell.[9][10]




Teoria do absorvedor de Wheeler e Feynman

Origem: Wikipédia, a enciclopédia livre.

teoria do absorvedor de Wheeler e Feynman, também chamada teoria time-symmetricteoria do meio absorvente[1] ou teoria de ação à distância de Wheeler e Feynman,[2]cujos criadores foram os físicos Richard Feynman e John Archibald Wheeler, é uma interpretação da eletrodinâmica que parte da ideia de que uma solução para as equações de campo eletromagnético tem que ser simétrica em relação ao inverso do tempo, tal como as próprias equações de campo. A razão disso é principalmente a importância da simetria T na Física. De fato não há razão aparente para que tal simetria deva ser quebrada e, portanto, uma direção do tempo não tem privilégios em relação à outra. Assim, uma teoria que respeite essa simetria parece mais elegante do que teorias em que se tem que eleger arbitrariamente uma direção do tempo como preferida em relação às demais.

Outra ideia-chave reminiscente do princípio de Mach e atribuída a Hugo Tetrode é a de que partículas elementares atuam sobre outras partículas elementares, que não elas próprias. Isso imediatamente remove o problema das autoenergias.

Resolução de problema de causalidade

T.C. Scott e R.A. Moore demonstraram que a aparente falta de causalidade, causada pela presença de avançado potenciaus de Liénard-Wiechert na sua formulação original pode ser removido através da fusão a sua teoria dentro de uma formulação totalmente relativista eletrodinâmica muitos de corpo, em termos de potenciais retardados apenas sem as complicações de a parte de absorção da teoria.[3][4] Se considerarmos a Lagrangiana agindo sobre a partícula um dos campos de tempo simétricos gerados pela partícula 2, temos:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




onde  é a energia cinética relativística funcional de partícula i, e, e  são, respectivamente, os potenciais retardados e avançado de Liénard-Wiechertagindo em partícula j dos campos eletromagnéticos gerados por partícula relativista i. Por outro lado, a lagrangiana correspondente para partícula 2 fez sinal por partícula 1 é:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




Foi inicialmente demonstrado com matemática experimental através de matemática simbólica[5] e em seguida demonstrado matematicamente[6] de que a diferença entre um potencial retardado de partícula i agir sobre partícula j, e o potencial avançado de j partícula agindo sobre a partícula i é simplesmente um tempo total derivado :

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




ou uma "divergência", como é chamado no cálculo das variações , porque em nada contribui para as equações de Euler-Lagrange. Assim, através da adição da quantidade adequada de derivados de tempo total para estes lagrangianas, os potenciais avançados podem ser eliminados. O Lagrangeano para o problema dos N-Corpos é, portanto:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




em que os potenciais avançados não fazem nenhuma aparência. Além disso, esta apresenta simetria Lagrangiana partícula-partícula.[3] Para  este Lagrangiana gerará exactamente as mesmas equações do movimento de  e  e, conseqüentemente, a física do problema é preservada. Assim, do ponto de vista de um observador do lado de fora da visualização relativista problema n-corpo , tudo é causal. No entanto, se isolar as forças que atuam sobre um corpo particular, o potencial avançado faz a sua aparição. Esta reformulação do problema vem com um preço: o N-corpo Lagrangiana depende de todas as derivadas temporais das curvas traçadas por todas as partículas ou seja, o Lagrangiano é a ordem infinita. No entanto, sob simetria troca de partículas totais e Generalized Momenta (resultante da definição de uma ordem de Lagrange infinito) são conservados. O recurso que pode parecer uma não-local é que o princípio de Hamilton é aplicada a um sistema de muitas partículas relativista como um todo, mas isso é o máximo que se pode ir com a teoria clássica (não da mecânica quântica). No entanto, muito progresso foi feito em examinar a questão não resolvida da quantização da teoria.[7][8][9] As soluções numéricas para o problema clássico também foram encontradas.[10] Note também que esta formulação recupera a lagrangiana de Darwin de que a equação Breit foi originalmente derivada, mas sem os termos dissipativos. [4] Isso garante acordo com a teoria ea experiência até, mas não incluindo o desvio de Lamb. Uma vantagem importante de sua abordagem é a formulação de uma canônica impulso generalizado totalmente preservado, tal como apresentado em artigo de revisão abrangente à luz do paradoxo EPR.[11]




Equações de campo de Einstein

Origem: Wikipédia, a enciclopédia livre.

Em físicaa equação de campo de Einstein ou a equação Einstein é uma equação na teoria da gravitação, chamada relatividade geral, que descreve como a matéria gera gravidade e, inversamente, como a gravidade afeta a matéria. A equação do campo de Einstein se reduz à lei de Newton da gravidade no limite não-relativista, isto é, à velocidades baixas e campos gravitacionais pouco intensos.

Na equação, a gravidade se dá em termos de um tensor métrico, uma quantidade que descreve as propriedades geométricas do espaço-tempo tetradimensional. A matéria é descrita por seu tensor de energia-momento, uma quantidade que contém a densidade e a pressão da matéria. Estes tensores são tensores simétricos 4 x 4, de modo que têm 10 componentes independentes. Dada a liberdade de escolha das quatro coordenadas do espaço-tempo, as equações independentes se reduzem a 6. A força de acoplamento entre a matéria e a gravidade é determinada pela constante gravitacional universal.

Uma analogia para a curvatura do espaço-tempo causada por uma massa

Solução da equação de campo de Einstein

Uma solução da equação de campo de Einstein é certa métrica apropriada para a distribuição dada da massa e da pressão da matéria. Algumas soluções para uma situação física dada são com as que se seguem.

Distribuição de massa esférica simétrica e estática

Schwarzschild interior.jpg

A solução para o vazio ao redor de uma distribuição de massa esférica simétrica e estática é a métrica de Schwarzschild e métrica de Kruskal-Szekeres. Se aplica a uma estrela e conduz à previsão de um horizonte de eventos além do qual não se pode observar. Prevê a possível existência de um buraco negro de massa dada  da qual não pode ser extraída nenhuma energia, no sentido clássico do termo (isto é, não é válido para o domínio da Mecânica Quântica - ver radiação de Hawking).

Massa de simetria axial em rotação

A solução para o espaço vazio ao redor de uma distribuição de massa de simetria axial em rotação é a métrica de Kerr. Se aplica a uma estrela que gire e conduz à previsão da existência possível de um buraco negro em rotação de massa dada  e momento angular , do qual a energia rotacional pode ser extraída.

Universo isotrópico e homogêneo

geometria geral do universo é determinada de acordo com as equações de Friedmann e o parâmetro cosmológico Ômega se este é maior, menor ou igual a 1. De cima para baixo: um universo esférico ou fechado com curvatura positiva, um universo hiperbólico com curvatura negativa e um universo plano com curvatura nula.

A solução para um Universo isotrópico e homogêneo, totalmente com densidade constante e de uma pressão insignificante, é a Métrica de Friedmann-Robertson-Walker. Se aplica ao Universo em sua totalidade e conduz a diversos modelos de sua evolução que predizem um Universo em expansão. Em 2016, uma equipe de cosmólogos mostrou que o universo é "isotrópico", ou o mesmo, não importa maneira que é observado: Não há eixo de rotação ou qualquer outra direção especial no espaço.[1]

Forma matemática da equação do campo de Einstein

A equação do campo de Einstein descreve como o espaço-tempo se curva pela matéria e, reciprocamente, como a matéria é influenciada pela curvatura do espaço-tempo, ou digamos, como a curvatura dá lugar à gravidade.

A equação do campo se apresenta como se segue:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




onde o tensor  é a curvatura de Einstein, uma equação diferencial de segunda ordem em termos do tensor métrico , e  é o tensor de energia-momento. A constante de acoplamento se dá em termos de  é Pi é a velocidade da luz e  é a constante gravitacional.

O tensor da curvatura de Einstein se pode escrever como

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




onde além disso  é o tensor de curvatura de Ricci é o escalar de curvatura de Ricci e  é a constante cosmológica.

A equação do campo portanto também pode apresentar-se como se segue:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




 é um tensor simétrico 4 x 4, assim que tem 10 componentes independentes. Dada a liberdade de escolha das quatro coordenadas do espaço-tempo, as equações independentes se reduzem em número a 6.

Estas equações são a base da formulação matemática da relatividade geral.

Interpretacão geométrica da Equação de Einstein


A Teoria da relatividade mostra que a massa dos corpos depende do observador, pois esta varia com sua velocidade aparente, tal como no conceito de simultaneidade, e portanto também o espaço que se observa (formado por todos os eventos simultâneos). Assim, a equação de Einstein pode enunciar-se também afirmando que para cada observador, a curvatura escalar  do espaço é proporcional à densidade aparente :

onde c = 3 × 1010 [cm s-1] é a velocidade da luz e G = 6,67 × 10-8 [cm³ s-2 g-1] é a constante da gravitação universal. De acordo com o significado geométrico da curvatura escalar, esta igualdade afirma que em uma esfera de massa M e densidade constante, o excesso radial (a diferença entre o raio real e o raio que corresponderia na geometria euclidiana a uma esfera de igual área) é igual a

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




Por exemplo, no caso da Terra o excesso radial é de 0,15 cm e no caso do Sol é de aproximadamente 500 metros.

É notável que, esta equação, que introduz mínimas correções nas fórmulas da geometria euclidiana, atinja quase todas as equações conhecidas da Física macroscópica. Com efeito, quando a velocidade da luz c tende ao infinito, dela se derivam a Lei newtoniana da Gravitação, a Equação de Poisson e, portanto, o caráter atrativo das forças gravitacionais, as equações da mecânica dos fluidos (equação de continuidade e equações de Euler), as leis de conservação da massa-energia e do momento, o caráter euclidiano do espaço, etc..

Igualmente se derivam todas as leis de conservação relativísticas, e que a existência de campos gravitacionais e de massa só são possíveis quando o espaço tem dimensão maior que 2. Mais ainda, se supõe que o espaço tem dimensão 4 (as três que vemos habitualmente mais uma pequeníssima dimensão circular extra, aproximadamente do tamanho do chamado comprimento de Planck ~  cm) da equação de Einstein se deduzem a teoria clássica do electromagnetismo: as equações de Maxwell e, portanto, a lei de Coulomb, a Conservação da carga elétrica e a lei de Lorentz.

Equações de Einstein-Maxwell

Se o tensor energia-momento  é aquele de um campo eletromagnéticoi.e. se o tensor momento-energia eletromagnético

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




é usado, então as equações de campo de Einstein são chamadas equações Einstein-Maxwell:

/////////////////////////////////////////////////////////////////////////////////////

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.





Comentários

Postagens mais visitadas deste blog

TRIGONOMETRIA VARIACIONAL RELATIVA, DIMENSIONAL CONFORMAL.